Filter-enhanced MLP is All You Need for Sequential Recommendation

Kun Zhou^{1,4†}, Hui Yu^{2,5†}, Wayne Xin Zhao^{3,4*} and Ji-Rong Wen^{3,4}

¹School of Information, Renmin University of China, China

²University of Chinese Academy of Sciences, China

³Gaoling School of Artificial Intelligence, Renmin University of China, China

⁴Beijing Key Laboratory of Big Data Management and Analysis Methods

⁵Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences francis_kun_zhou@163.com, ishyu@outlook.com, batmanfly@gmail.com, jrwen@ruc.edu.cn

WWW 2022

Code: https://github.com/RUCAIBox/FMLP-Rec.

Dataset: Beauty Sports Toys Yelp Nowplaying Retailrocket Tmall Yoochoose

Motivation&Solution

Motivation(Take SASRec as an example):

- logged user behavior data is inevitable to contain noise
- and deep recommendation models are easy to overfit on these logged data

Solution (Take SASRec as an example):

To tackle this problem, we borrow the idea of filtering algorithms from signal processing that attenuates the noise in the frequency domain

By replacing the self-attention components from Transformers to a novel filter layer

In a filter we perform Fast Fourier Transform (FFT) to convert the input representations into the frequency domain and an inverse FFT procedure recovers the denoised representations.

Problem Statement

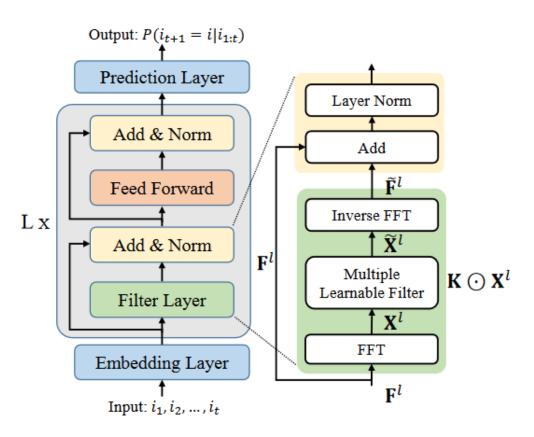


Figure 2: The overview of our FMLP-Rec, an all-MLP model that stacks multiple learnable filter-enhanced blocks.

Assume that we have a set of users and items, denoted by \mathcal{U} and I, respectively, where $u \in \mathcal{U}$ denotes a user and $i \in I$ denotes an item. The numbers of users and items are denoted as $|\mathcal{U}|$ and |I|, respectively. For sequential recommendation with implicit feedback, a user u has a context c, a chronologically-ordered interaction sequence with items: $c = \{i_1, \cdots, i_n\}$, where n is the number of interactions and i_t is the t-th item that the user u has interacted with. For convenience, we use $i_{j:k}$ to denote the subsequence, i.e., $i_{j:k} = \{i_j, \cdots, i_k\}$ where $1 \leq j < k \leq n$.

Based on the above notations, we now define the task of sequential recommendation. Formally, given the contextual item sequence of a user $c = \{i_1, \dots, i_n\}$, the task of sequential recommendation is to predict the next item that the user is likely to interact with at the (n + 1)-th step, denoted as $p(i_{n+1}|i_{1:n})$.

Method

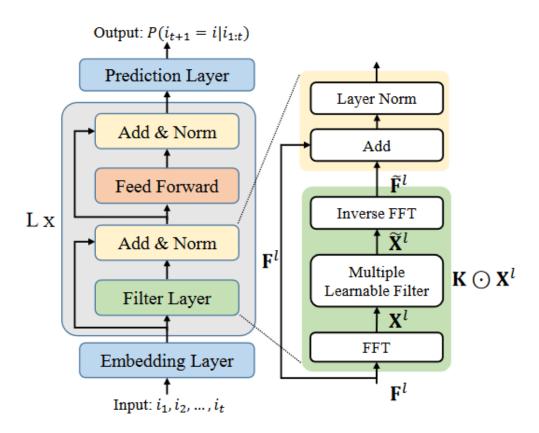


Figure 2: The overview of our FMLP-Rec, an all-MLP model that stacks multiple learnable filter-enhanced blocks.

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}nk}, \quad 0 \le k \le N-1.$$
 (1)

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{\frac{2\pi i}{N} nk}.$$
 (2)

$$E_I = Dropout(LayerNorm(E + P)).$$
 (3)

$$\mathbf{X}^{l} = \mathcal{F}(\mathbf{F}^{l}) \in \mathbb{C}^{n \times d}$$
 (4)

$$\widetilde{\mathbf{X}}^l = \mathbf{W} \odot \mathbf{X}^l$$
, (5)

$$\widetilde{\mathbf{F}}^{l} \leftarrow \mathcal{F}^{-1}(\widetilde{\mathbf{X}}^{l}) \in \mathbb{R}^{n \times d}$$
 (6)

$$\widetilde{\mathbf{F}}^l = \operatorname{LayerNorm}(\mathbf{F}^l + \operatorname{Dropout}(\widetilde{\mathbf{F}}^l))$$
 (7)

$$FFN(\widetilde{\mathbf{F}}^l) = (ReLU(\widetilde{\mathbf{F}}^l \mathbf{W}_1 + \mathbf{b}_1))\mathbf{W}_2 + \mathbf{b}_2, \tag{8}$$

$$P(i_{t+1} = i|i_{1:t}) = \mathbf{e}_i^\top \mathbf{F}_t^L,$$

$$L = -\sum_{u \in \mathcal{U}} \sum_{t=1}^{n} \log \sigma \left(P(i_{t+1}|i_{1:t}) - P(i_{t+1}^{-}|i_{1:t}) \right), \tag{10}$$

Table 1: Performance comparison of SASRec and GRU4Rec with different filtering algorithms.

Methods	Filter	В	eauty	Sports			
Methods	ritter	HR@10	NDCG@10	HR@10	NDCG@10		
		0.4106	0.2584	0.4299	0.2527		
	+HPF	0.3828	0.2228	0.3654	0.2063		
GRU4Rec	+LPF	0.4351	0.2689	0.4481	0.2578		
	+BSF	0.4372	0.2658	0.4432	0.2563		
		0.4696	0.3156	0.4622	0.2869		
	+HPF	0.4544	0.3037	0.4530	0.2785		
SASRec	+LPF	0.4941	0.3320	0.5040	0.3138		
	+BSF	0.5011	0.3334	0.5115	0.3172		

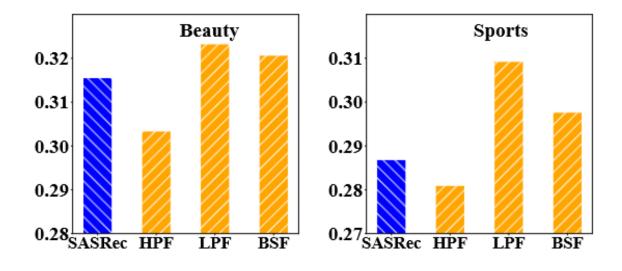


Figure 1: Performance (NDCG@10) comparison of all-MLP variants of SASRec with different filtering algorithms.

Table 2: Time complexity and receptive field of the proposed FMLP-Rec with Caser and SASRec, where n and k denote the sequence length and convolution kernel size, respectively. For simplicity, we omit other same terms (e.g., hidden size) and highlight the difference at the sequence level.

	Time Complexity per Layer	Receptive Field
Caser	O(kn)	k
SASRec	$O(n^2)$	n
FMLP-Rec	$O(n \log n)$	n

Table 3: Statistics of the datasets after preprocessing.

Dataset	# Sequences	# Items	# Actions	# Sparsity
Beauty	22,363	12,101	198,502	99.93%
Sports	25,598	18,357	296,337	99.95%
Toys	19,412	11,924	167,597	99.93%
Yelp	30,431	20,033	316,354	99.95%
Nowplaying	145,612	59,593	1,085,410	99.99%
Retailrocket	321,032	51,428	871,637	99.99%
Tmall	66,909	37,367	427,797	99.98%
Yoochoose	470,477	19,690	1,434,349	99.98%

Table 4: Performance comparison of different methods on four datasets containing user transaction records. The best performance and the second best performance methods are denoted in bold and underlined fonts respectively.

Datasets	Metric	PopRec	FM	AutoInt	GRU4Rec	Caser	HGN	RepeatNet	CLEA	SASRec	BERT4Rec	SRGNN	GCSAN	FMLP-Rec
	HR@1	0.0678	0.0405	0.0447	0.1337	0.1337	0.1683	0.1578	0.1325	0.1870	0.1531	0.1729	0.1973	0.2011
	HR@5	0.2105	0.1461	0.1705	0.3125	0.3032	0.3544	0.3268	0.3305	0.3741	0.3640	0.3518	0.3678	0.4025
Dt	NDCG@5	0.1391	0.0934	0.1063	0.2268	0.2219	0.2656	0.2455	0.2353	0.2848	0.2622	0.2660	0.2864	0.3070
Beauty	HR@10	0.3386	0.2311	0.2872	0.4106	0.3942	0.4503	0.4205	0.4426	0.4696	0.4739	0.4484	0.4542	0.4998
	NDCG@10	0.1803	0.1207	0.1440	0.2584	0.2512	0.2965	0.2757	0.2715	0.3156	0.2975	0.2971	0.3143	0.3385
	MRR	0.1558	0.1096	0.1226	0.2308	0.2263	0.2669	0.2498	0.2376	0.2852	0.2614	0.2686	0.2882	0.3051
	HR@1	0.0763	0.0489	0.0644	0.1160	0.1135	0.1428	0.1334	0.1114	0.1455	0.1255	0.1419	0.1669	0.1646
	HR@5	0.2293	0.1603	0.1982	0.3055	0.2866	0.3349	0.3162	0.3041	0.3466	0.3375	0.3367	0.3588	0.3803
Cnorto	NDCG@5	0.1538	0.1048	0.1316	0.2126	0.2020	0.2420	0.2274	0.2096	0.2497	0.2341	0.2418	0.2658	0.2760
Sports	HR@10	0.3423	0.2491	0.2967	0.4299	0.4014	0.4551	0.4324	0.4274	0.4622	0.4722	0.4545	0.4737	0.5059
	NDCG@10	0.1902	0.1334	0.1633	0.2527	0.2390	0.2806	0.2649	0.2493	0.2869	0.2775	0.2799	0.3029	0.3165
	MRR	0.1660	0.1202	0.1435	0.2191	0.2100	0.2469	0.2334	0.2156	0.2520	0.2378	0.2461	0.2691	0.2763
	HR@1	0.0585	0.0257	0.0448	0.0997	0.1114	0.1504	0.1333	0.1104	0.1878	0.1262	0.1600	0.1996	0.1935
	HR@5	0.1977	0.0978	0.1471	0.2795	0.2614	0.3276	0.3001	0.3055	0.3682	0.3344	0.3389	0.3613	0.4063
Toys	NDCG@5	0.1286	0.0614	0.0960	0.1919	0.1885	0.2423	0.2192	0.2102	0.2820	0.2327	0.2528	0.2836	0.3046
1095	HR@10	0.3008	0.1715	0.2369	0.3896	0.3540	0.4211	0.4015	0.4207	0.4663	0.4493	0.4413	0.4509	0.5062
	NDCG@10	0.1618	0.0850	0.1248	0.2274	0.2183	0.2724	0.2517	0.2473	0.3136	0.2698	0.2857	0.3125	0.3368
	MRR	0.1430	0.0819	0.1131	0.1973	0.1967	0.2454	0.2253	0.2138	0.2842	0.2338	0.2566	0.2871	0.3012
	HR@1	0.0801	0.0624	0.0731	0.2053	0.2188	0.2428	0.2341	0.2102	0.2375	0.2405	0.2176	0.2493	0.2727
	HR@5	0.2415	0.2036	0.2249	0.5437	0.5111	0.5768	0.5357	0.5707	0.5745	0.5976	0.5442	0.5725	0.6191
Veln	NDCG@5	0.1622	0.1333	0.1501	0.3784	0.3696	0.4162	0.3894	0.3955	0.4113	0.4252	0.3860	0.4162	0.4527
Yelp	HR@10	0.3609	0.3153	0.3367	0.7265	0.6661	0.7411	0.6897	0.7473	0.7373	0.7597	0.7096	0.7371	0.7720
	NDCG@10	0.2007	0.1692	0.1860	0.4375	0.4198	0.4695	0.4393	0.4527	0.4642	0.4778	0.4395	0.4696	0.5024
	MRR	0.1740	0.1470	0.1616	0.3630	0.3595	0.3988	0.3769	0.3751	0.3927	0.4026	0.3711	0.4006	0.4299

Table 5: Performance comparison of different methods on four session-based datasets. Since these datasets do not have attribute information and the item sequences are usually shorter, we remove several improper baseline methods.

Datasets	Metric	PopRec	GRU4Rec	Caser	HGN	RepeatNet	CLEA	SASRec	SRGNN	GCSAN	FMLP-Rec
	HR@1	0.0757	0.4035	0.3435	0.3491	0.3350	0.2728	0.4396	0.3819	0.4447	0.4731
	HR@5	0.2197	0.6829	0.6267	0.6026	0.5257	0.5575	0.7042	0.6028	0.6728	0.7262
N1	NDCG@5	0.1480	0.5536	0.4942	0.4835	0.4355	0.4226	0.5812	0.4986	0.5658	0.6094
Nowplaying	HR@10	0.3318	0.7720	0.7318	0.6992	0.6110	0.6766	0.7968	0.7007	0.7616	0.8081
	NDCG@10	0.1841	0.5825	0.5283	0.5149	0.4631	0.4612	0.6113	0.5304	0.5946	0.6360
	MRR	0.1602	0.5314	0.4752	0.4677	0.4297	0.4070	0.5615	0.4892	0.5520	0.5895
	HR@1	0.0817	0.7202	0.6871	0.6432	0.6744	0.3410	0.7588	0.7408	0.7773	0.7736
	HR@5	0.2315	0.8597	0.8348	0.7650	0.7724	0.6139	0.8769	0.8373	0.8650	0.8810
Dotoiluooleet	NDCG@5	0.1577	0.7982	0.7689	0.7098	0.7270	0.4853	0.8250	0.7937	0.8259	0.8338
Retailrocket	HR@10	0.3388	0.8925	0.8719	0.8036	0.8112	0.7296	0.9024	0.8684	0.8901	0.9060
	NDCG@10	0.1922	0.8089	0.7809	0.7223	0.7395	0.5227	0.8333	0.8037	0.8340	0.8419
	MRR	0.1694	0.7858	0.7563	0.7029	0.7234	0.4702	0.8145	0.7878	0.8199	0.8247
	HR@1	0.1025	0.4178	0.3288	0.4467	0.5556	0.2895	0.4045	0.4026	0.4650	0.5173
	HR@5	0.2264	0.5855	0.5066	0.5793	0.6090	0.4573	0.5478	0.5335	0.5940	0.6565
Tmall	NDCG@5	0.1647	0.5062	0.4230	0.5168	0.5826	0.3768	0.4792	0.4710	0.5329	0.5911
rman	HR@10	0.2967	0.6636	0.5943	0.6471	0.6494	0.5478	0.6275	0.6082	0.6591	0.7206
	NDCG@10	0.1874	0.5315	0.4513	0.5386	0.5956	0.4060	0.5049	0.4950	0.5538	0.6118
	MRR	0.1723	0.5021	0.4209	0.5168	0.5894	0.3775	0.4804	0.4736	0.5328	0.5879
	HR@1	0.1794	0.7208	0.7041	0.6278	0.7450	0.5106	0.7611	0.7575	0.7855	0.7749
	HR@5	0.4990	0.8950	0.8818	0.8425	0.8673	0.7628	0.8976	0.8840	0.9073	0.9084
Vaaahaaaa	NDCG@5	0.3432	0.8189	0.8026	0.7460	0.8123	0.6465	0.8375	0.8280	0.8535	0.8499
Yoochoose	HR@10	0.6574	0.9273	0.9172	0.8927	0.9001	0.8436	0.9273	0.9137	0.9320	0.9359
	NDCG@10	0.3948	0.8294	0.8141	0.7623	0.8230	0.6727	0.8471	0.8376	0.8616	0.8588
	MRR	0.3276	0.8004	0.7838	0.7246	0.8019	0.6257	0.8240	0.8164	0.8414	0.8364

Table 6: Ablation study of our FMLP-Rec, we report NDCG@10 on Beauty and Sports datasets.

	В	eauty	Sports			
	HR@10	NDCG@10	HR@10	NDCG@10		
FMLP-Rec	0.4998	0.3385	0.5059	0.3165		
w/o Filter Layer	0.4317	0.2914	0.4243	0.2604		
w/o FFN	0.4607	0.3067	0.4594	0.2838		
w/o Add & Norm	0.4654	0.2919	0.4831	0.2860		
+HPF	0.4567	0.3034	0.4595	0.2810		
+LPF	0.4847	0.3233	0.4949	0.3093		
+BSF	0.4822	0.3207	0.4835	0.2977		

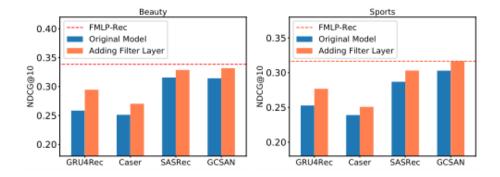


Figure 3: Performance (NDCG@10) comparison of different models enhanced by our learnable filters.

Thanks